skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zack, Ellianna H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Captive specimens in museum collections facilitate study of rare taxa, but the lifestyles, diets, and lifespans of captive animals differ from their wild counterparts. Trabecular bone architecture adapts to in vivo forces, and may reflect interspecific variation in ecology and behavior as well as intraspecific variation between captive and wild specimens. We compared trunk vertebrae bone microstructure in captive and wild xenarthran mammals to test the effects of ecology and captivity. We collected μCT scans of the last six presacral vertebrae in 13 fossorial, terrestrial, and suspensorial xenarthran species (body mass: 120 g to 35 kg). For each vertebra, we measured centrum length; bone volume fraction (BV.TV); trabecular number and mean thickness (Tb.Th); global compactness (GC); cross-sectional area; mean intercept length; star length distribution; and connectivity and connectivity density. Wild specimens have more robust trabeculae, but this varies with species, ecology, and pathology. Wild specimens of fossorial taxa (Dasypus) have more robust trabeculae than captives, but there is no clear difference in bone microstructure between wild and captive specimens of suspensorial taxa (Bradypus, Choloepus), suggesting that locomotor ecology influences the degree to which captivity affects bone microstructure. Captive Tamandua and Myrmecophaga have higher BV.TV, Tb.Th, and GC than their wild counterparts due to captivity-caused bone pathologies. Our results add to the understanding of variation in mammalian bone microstructure, suggest caution when including captive specimens in bone microstructure research, and indicate the need to better replicate the habitats, diets, and behavior of animals in captivity. 
    more » « less
  2. Captive specimens in natural history collections allow researchers to inspect the morphologies of rare taxa, but the lifestyles,diets, and lifespans of captive animals differ from those of their wild counterparts. To quantify these differences, we compared bone microstructure of trunk vertebrae in captive and wild xenarthran mammals (sloths, armadillos, anteaters). Because trabecular bone architecture (TBA) adapts to in vivo forces, bone microstructure reflects ecology and behavior, but this means that it may differ between captive and wild specimens of the same species. We collected μCT scans of the last six presacral vertebrae in 13 species of fossorial, terrestrial, and suspensorial xenarthrans ranging in body mass from 120g (Chlamyphorus) to 35kg (Myrmecophaga). For each vertebra, we measured bone volume fraction (BVF); trabecular number, mean thickness (TbTh), and orientation; global compactness; and cross sectional area. Wild specimens generally have more robust trabeculae, but this differs based on species, vertebral position, ecology, and pathology. The wild specimens of fossorial taxa (Dasypus) have more robust trabeculae than their captive counterparts, but there is no clear difference in TBA of wild and captive specimens in suspensorial and terrestrial taxa (Bradypus, Choloepus, Cyclopes). These data suggest that locomotor ecology affects the level to which captivity affects bone microstructure. The captive specimens of both Tamandua and Myrmecophaga have higher BVF and TbTh than their wild counterparts, indicating more brittle trabeculae due to bone pathologies caused by captivity. Our results add to the overall understanding of variation in mammalian bone microstructure and suggest caution when including captive specimens in research on TBA. 
    more » « less